— S —

Issue #8 November 2021

| | —

Published by:
Timothy Swenson
swenson_t@sbcglobal.net
swensont@lanset.com

ZXzine is published as a service

to the Sinclair ZX&1

community. Writers are invited

to submit articles for

publication. Readers are invited

to submit article ideas.

Created using Open
Source Tools:

- OpenOffice
- Scribus

- Gimp

- S7Z81

- Zesarux

Copyright 2021
Timothy Swenson

Creative Commons License
- Attribution
- Non-Commercial
- Share-Alike

You are free:
- To copy, distribute,
display, and perform

the work.

- To make derivitive
works.

- To redistribute the
work.

Table of Contents

Editorial rreeeeeeeeeeeeeeeeneens

Active T/S 2068 Group = cererenneecsenneens

Expanding T/S 2068 Software = .evnennennnennne

Porting Assembly from Spectrum to T/S 2068

tsmake veeeeeeeeeeresseennens

Boriel's ZX BASIC Compiler & T/S 2068cccovuveerunnee.

zxpaint2 e

More Astronomical Programs for the ZX81

Prime Number Benchmark @ = cvverreeeeneneeceeees

Structured Programming with ZX81 BASIC

Editorial

It's been a couple of years since the last issue of
ZXzine. Working from home just extended by
working day and limiting my time for hobbies. I've
been working on these articles for a while, but here
they are.

There are articles for both the ZX81 and T/S 2068.
I might start working on more T/S 2068
programming projects, now that there are more
tools for T/S 2068 programming. With the T/S
2068 having more colors and higher resolution than
the ZX8]1, it takes more work to make a T/S 2068
program look nice than it does for the ZX81, which
means more work on making things look pretty.
Since programmers are lazy, I hope that I don't let
that affect working on T/S 2068 programs.

Active T/S 2068 Group

David Anderson has put together
www.timexsinclair.com. It is a web site for all
Timex/Sinclair products, user groups, newsletters,
etc. The focus is on the T/S products, but the ZX81,
QL and Z88 are mentioned.

Through him I found out about an active T/S 2068
mailing list hosted on groups,io. The e-mail address
to join the group is:

TS2068+owner@groups.io

Expanding T/S 2068 Software

With the active T/S 2068 group, there has been
some discussion of getting more software to the T/S
2068. A lot of discussion was on porting Spectrum
games to the T/S 2068, but that takes a fair amount
of work, one game at a time.

Since the T/S 2068 and Spectrum are mostly
compatible at the BASIC level, I thought it would
be easy to find Spectrum programs that were
probably written in BASIC and test them on the T/S
2068. I was already looking at Othello/Reversi
programs for the Spectrum, so I tried out the
different programs on the T/S 2068. I also had

some Spectrum Astronomy software. I will create a
list of the software that I have tried and post it on
my website. As I run across more software to test, [
will update the list. The World of Spectrum archive
has quite a number of archived games to try out.
There are two versions of World of Spectrum:

https://worldofspectrum.org/

https://worldofspectrum.net/ (World of Spectrum
Classic)

Another source of programs are Type-In's from
different magazines. The Type-Fantastic web site
(http://www.users.globalnet.co.uk/~jg2 7paw4/type-
ins/typehome.htm)

1s a repository for listing type-in programs for the
Spectrum, ZX81 and QL, from a number of UK
magazines. The list has information about the
different programs and if they are in BASIC,
Machine Code, or a combination of both. There are
a number of programs that are in just BASIC. I've
tried some of these and most have worked with no
issue. There is a whole trove of programs to look at,
with most being a game of some sort. It is likely
that the magazines that the programs came from are
available via the Internet Archive.

I thought it would be a good idea to do something
similar for T/S 2068 programs, so I have gone
through Time Designs and UPDATE! magazines
and created a list of type-in programs. I will post
this on my website and update it if I find other
newsletters to add. I have typed in a few of the
programs and they will also be on my website.

Porting Assembly from Spectrum to T/S
2068

In the last year I have discovered two versions of
the T/S 2068 ROM disassemblies. The Spectrum
ROM has long been available in a couple of forms.
Using these documents, I have been able to port
some Spectrum assembly language programs to the
T/S 2068.

Since the ROM's are a little different between the
systems, the porting process is to convert all
Spectrum ROM calls to T/S 2068 calls. One of the
T/S 2068 ROM documents has a list of Spectrum
calls and the equivalent for the T/S 2068. The

==

problem is that some of the Spectrum calls are not
the well published ones. This means that I have to
look at the code in both ROM's looking for exact
matches.

I have documented this process in a paper and
published it on my website.

tsmake

zmakebas is a tool for converting BASIC text files
into a .tap file for the Spectrum. Since the
Spectrum BASIC is 99% the same with the T/S
2068 BASIC, zmakebas works for the T/S 2068.

There are some T/S 2068 keywords that zmakebas
does not support. The most important of these is the
SOUND command. Others are ONERR, STICK,
FREE, and RESET.

Looking at the Spectrum and T/S 2068 character
sets, SOUND is the same as the right brace (}), ON

1@ SOUMDR 7,56

1z SOUND B,65; 1,368,127 .56

14 PRHUSE E@

16 SOUND B ,658; 1.3;&8,12;2,151; 3
s2:9,12; 7,56

15 PRAUSE 5@

2@ SOUNDE 4,46, 5,.2; 18,12; 7,56

22 FRAUSE Sa@

24 SOUMND @,8;1,8;2,8;3,8;4,8;5

]

B oK, @:1
Program on T/S 2068

ERR is the same as the left brace ({), RESET as the
asterisk (*), STICK the same as the pipe symbol (|)
and FREE the same as the tilde symbol (~).

I found that if I put in a } symbol, ran zmakebas,
then loaded the TAP file into an emulator in T/S
2068 mode, I would get the SOUND keyword. The
same TAP file into an emulator in Spectrum mode
and I got the right brace.

Now, I could look into the source code of zmakebas

and see how to have it find the SOUND command
and put in the right character in the TAP file, but it
could take a bit of work to get that done. All I really
needed to do was to take the SOUND work and
convert it to the right brace. I decided to write a
shell script that would do that and then run
zmakebas. All the user would have to do is to run
the shell script with the basic text file as an

1ax7 .56

12¥0,658;1,3,58.,12,;,7 .56

14 PRUSE &2

16XB,658;1,3;58,12;2,151; =,2:9,1
2, 7,58

1S PRUSE &8&

28r4 .45 5

Ll 1]

Program on ZX Spectum

argument and they would get a TAP file out the
other end.

The shell script is called tsmake.sh. It converts the
5 “new” keywords in a .bas file, to the right
characters for zmakebas to process into a TAP file.
The script creates a temp file for to hold the basic
file after it has been modified. I did not want to
modify the original basic file as that would affect
the readability of the original program. The script
then feeds the temp file into zmakebas. The
arguments for zmakebas are hard-coded into the
script, but the user can easily edit them.

#!/bin/bash

tsmake.sh

Converts T/S 2068 keywords to
character that zmakebas

can handle and then runs

zmakebas.

Keywords are: SOUND, ON ERR,
RESET, STICK, FREE

NOTE: If these words are used
in a strings, they will also be
changed.

aEOE =

directory

usage: ./tsmake.sh test 2. Drill down in to the source code

3. Copy the files from my website over the existing
cp $1l.bas $1.basx files.
sed -1 's/sound/}/gI' $1.basx
sed -i 's/on err/{/gl' $l.basx Now when the compiler is run, the programs will
sed -i 's/onerr/{/gl' $1l.basx run on the T/S 2068. If you still want to compile for
sed -i 's/reset/*/gI' $l1l.basx the Spectrum, then just install another copy of ZX
sed -i 's/stick/|/gI' $1.basx BASIC in another directory and there you go.

sed -i 's/free/~/gl' $1.basx
zmakebas -o $1.tap $1.basx
rm $1.basx zxpaint2

ZXpaintyOne is a browser-based tool, written in
Boriel's ZX BASIC Compiler & T/S 2068 Javascript, that lets users create screen art for the
ZX81. It supports the graphics characters, letting

Now that I have a reasonable grasp on converting the user draw on the screen with a mouse. It is sort
Spectrum ROM to T/S 2060 ROM, I psrder 4 of like the MS Paint for the
wondered if it is possible to convert 7ZX8l1.
the ZX BASIC compiler to support for % = 1 to 5
the T/S 2068. print x;" "; Once done drawing, the "save"
next x button creates a list of the hex
I've used the compiler and found that codes for the characters on the
some Spectrum programs will work plot 0,100 screen. The problem is getting
on the T/S 2068. Aslong asa ROM graw 80 ,-35 those hex codes into a format
call i§ not used, .it's fine. But' some of plot 90,150 that can be used on the ZX81.
the simple stuff in BASIC willnot qraw 80 ,-35
work, like CLS. A while back I wrote zxpaint
plot 100,100 .(now.renamed to zxpaintl). This
I dug through the source code files on gpaw 50 ,50, PI is a simple C program that
ZX BASIC and found the library and converts the text listing of hex
library-asm directories. These codes into a binary file of the
contain files that reference the same hex codes that can be
Spectrum ROM. I went through these loaded into screen memory of a
files and converted the ROM calls to ZX81 (using a version of load
T/S 2068 equivalent calls. from ZXPand that can take an

argument of a file).

I wrote some test programs
that made use of these calls
and they worked on the T/S
2068.

This time I wanted to
draw a screen and then
use it with zxtext2p.
zxtext2p has some text
versions of the ZX81
graphics characters. [
needed to convert the hex
code into the format used
by zxtext2p.

I have published the
changed files on my web
page. To get ZX BASIC to
support the T/S 2068, all
one needs to do is to the
following:

zxpaint2 is such a

1. Install ZX BASIC in a program. It takes two

EOE =

arguments, the first being the input file with the hex
codes and the second is the output file in BASIC.
For each line on the screen, the PRINT command is
listed and then the graphics.

is the command to compile the program. It should
compile with pretty much any C compiler.

The program compiles as zxpaint2.exe. If

E ¥ [file:/fhome/swensont/zx81/zxpaintyone/zxpaintyone.html g ® Ihn =
%. [J Preview at 1x1
EEEEE . am
mEEEEEEESR L load/save
EEEE EE " N
I.. = |save || Load || Export |
= - am”

left:] middle: E right:| |

]

To create the input file, use the "save" option in
ZXpaintyone. Then highlight the entire save
section. Use CTRL-C to copy the text. Now open a
new text file and use CTRL-V to past the text into
the file. Do not edit the file and just save it.

L
...lllll----.......l..I.
EEEE ER =
I.. "u
= - e

ars2

zxpaint2 will create a 22 line file with BASIC
statements for the screen that was created. If only
part of the screen was created, then just delete those
lines of BASIC that are not needed.

To add text to the screen, the lines of BASIC can be
edited, or the text can be printed on the screen using
the AT function. This does mean that the text will
appear after the screen is drawn.

The source code is in the zip file released with this
issue. It is a simple C program and in the comments

overlay

[Enable overlay
Opacity 0.3

Image file

| Browse... | No file selected.

| Load Dver\‘;-l

Help

compiling with Linux, make sure to make the
program executable:

chmod 777 zxpaint2.ext
The program is run like this:
./zpaint2.ext file.bin file.bas

file.bin is a text file that has the output from
ZXpaintyone saved in it. file.bas should be a new
file that does not exist. Once the .bas file is created,
it can be run through zxtext2p to show that it
works. It can then be cut-n-pasted into the final
BASIC program.

More Astronomical Programs on the
7X81

I've been reading a number of books on
astronomical algorithms and have been writing
programs in C for each of the algorithms. |
originally worked on the QL, but I found it easier to
work on the code in Linux and then port to the QL.
Over time I have a number of programs. An
example is that I have found a number of ways to
determine the date of Easter and written programs
for each one. The programs are written as a
function or a procedure and then I have a test
program that calls the function or procedure.

o = | =

Since it is all in C, I wanted to see how easy it
would be to just compile the programs with
Z88DK. How many changes from the original code

[

HaUIx

[

2]

g i R S O e i s

TN Y~ 1550 TP RO~ 00 T Y= 00 TP T = 00 T
TG0 1 T = = T = 0000 OO0 T G = DO = N =

—

M O O O Cpann
ey S T e (V) (N (L (Rl (N el (N

MMC D= MMC T mme I
OTZW OTZW OTZD

would be necessary. For most programs, there were
no changes to be made. The code that compiled on
Linux with GCC also compiled with Z88DK. I did
run in to a few programs that failed after they were
compiled. After some head scratching and then
going to my backup C expert, I found the issue to
be one of type sizes. The INT size between Linux
and Z88DK was different, so I was getting
overflows on the ZX81. After a few code changes,
the programs were compiling and running just fine.

U2 = d4277S522.7S0SEE

US = 21214553,.654569

U4s = S@7FS00,.225450

Ul = Z@=.575S597

02 = 1@.Selass

U5 = 4.509755

Ui = 59.45R57E

E = Z1247SD.0S1SSE

H = 911165, 06A505

E = E@.185172

H = S.120515%

Fl = S.S55041

FZ = 9.5310565

R = 14.97S05S

Rd = ZE5.172449

EISTAMNCE FROM EOOHS TD EUFITER
(I MUFPITER RACIAH
EUGUST 15, 15

I(a] = -2.287255

FROFA = 1.596545

BEHYHEDE = 1.12SS57E

WMALLTETO = 16.658484

(=

It was nice to see that simple C programs written on
Linux would easy work on the ZX81. To port to the
QL, the only changes were putting in the locations
of where the source was located (win2_ vs winl).

I have zipped up the programs (source and
executable) and added them to the zip file
associated with this issue.

Prime Number Benchmark

In the January 1990 issue of the Capital Area Timex
Sinclair (CATS) Users Group newsletter, Duane
Parker published a prime number program that will
generate prime numbers from 32767 to X. The
program was used as a way to test the speed
differences between languages and compilers on the
QL. Duane provided examples in Forth, Pascal and
SuperBasic. A few months later Herb Schaaf
provided an example in C with the Small-C
compiler. A while after that I ported the program to
BBC Basic for the Z88.

Recently I was digging thought some CATS
newsletters and ran across the benchmark and
thought that I would try it on the ZX81 and T/S
2068. I ported the BASIC version and tried it out
on some different emulators. I took the C version,
took out some uneeded bits and ported it to Z88DK.
I was then able to compile for the ZX81 and T/S
2068. For the T/S 2068, I also did a version for
Boriel's ZX Basic compiler.

The original benchmark was from from 32767 to
29000. On a standard QL, that run took 245
seconds. I tried the same run on the ZX81 using the
sz81 emulator and gave up after 30 minutes. |
decided to adjust the number and went from 29000
to 32000. Here is the times that [saw:

7ZX81

BASIC
sz81 - 10 min 35 sec
Zesarux - 9 min 22 sec
ts1000 -4 min 3 sec
Xtender - 5 min 0 sec
zx8lem - 18 sec

Z88DK (C)
sz81 -23 sec
Zesurux - 20 sec
ts1000 - 9 sec
Xtender - 11 sec
zx8lem -n/a

It is interesting to see how much faster using C is
when compared to BASIC.

aEOE =

programming. An IF statement only allows one
On all of the emulators, I did not adjust the speed of command and not a block of commands. There is
the emulator. Both sz81 and Zesarux were at 100% no support for procedures. I find it really limiting.
speed and I could have set them to 4x or more.

In doing some research when started working on
The three other emulators were DOS emulators that this article, I found that there is a precedence in
I ran in DOSBOX. I also did not adjust the speed of teaching structured programming with BASIC. A

DOSBOX. The ts1000 emulator is by Jeff number of books have been written on the subject,
Vavasour. Xtender is by Carlos Delhez. zx8lemis back when BASIC was the primary language for
by Paul Robson and is a very fast emulator. microcomputers:

For the T/S 2068, I only had Zesarux to use. Here "Structured BASIC Programming", Kemery &

are the times that I found: Kurtz, 1987
"Introduction to Structured Programming using
BASIC BASIC", Barnett, 1984
Zesarux - 2 min 52 sec
Z88DK In Creative Computing, May - Sept. 1984, Arthur
Zesarux - 6 sec Luehrmann wrote a series of articles on structured
ZX BASIC programming with BASIC.

Zesarux - 16 sec
This article is my way of reminding myself how to
The ZX Basic compiler is not as good as using C, implement the different control and iteration
but it is far faster than using just BASIC. structures in ZX81 Basic. I can first write the code
in a structured way and then edit to fit ZX81 Basic.
This benchmark is a good way to see how much
faster a program can be when it is compiled and that

C is faster than compiled BASIC. Control Structures
IF ... THEN
Structured Programming with ZX81
BASIC The IF .. THEN structure is allowed on the ZX8]1,
but it only allows a single command after THEN.
The ZX81 was my first computer. I learned a fair Most languages allow a block of commands after
bit about programming using the ZX81. ZX81 the THEN.
BASIC is limited in its scope, even more limited
than BASIC on the Spectrum. ZX81 BASIC was IF <condition> THEN

designed to be less complex and a starting platform ...
for programmers. L.
In college, Pascal was the primary language and I END IF
leared about structured programming using Pascal.

When I bought the QL, I was able to use what I

learned with Pascal with SuperBasic. SuperBasic 100 IF <condition> THEN GOTO 120
had all the constructs that I had learned with 110 GOTO 150
structured programming. 120
130
As I think about writing software for the ZX81, the 140
difficulty I have is that I think in structured 150 <continue with program>

programming and ZX81 does not support structured

aEOE =

END SELECT
IF ... THEN ... ELSE

ZX81 Basic does not support the ELSE keyword, 100 IF CHOICE = 1 THEN GOTO 160
but an implied ELSE can be used. 110 IF CHOICE =2 THEN GOTO 190
120 IF CHOICE = 3 THEN GOTO 220
IF <condition> THEN 130 REMARK REMAINDER
......... 140
......... <block 1> 150
......... 160 GOTO 250
ELSE 170
......... 180
......... <block 2> 190 GOTO 250
......... 200
END IF 210
220 GOTO 250
230
100 IF <condition> THEN GOTO 160 240
110 REMARK ELSE 250 <continuation of program>
120
130 <block 2>
140 Iteration Structures
150 GOTO 200
160 FOR ... NEXT
170 <block 1>
180 The ZX81 supports the FOR..NEXT loop structure.
200 <continuation of program> No change is needed for this.
CASE/SWITCH/SELECT WHILE
Known as CASE in Pascal, SWITCH in C, and The WHILE structure is for controlling loops not
SELECT in SuperBasic, this structure allows based on a number (like the FOR..NEXT) but based
branching based on different values of a single on a condition.
variable.
SELECT ON var WHILE (X < 200)
........ X=X*2
=2 END WHILE

........ 100 IF X >= 200 then goto 500

_3 10 ...
........ 120 X=X*2
........ 130 ...
= REMAINDER 140 GOTO 100

........ 500 < continuation of program >

O

In some languages this structure has two type:

WHILE (condition) DO

WHILE (condition)

In the first structure the check if made at the start of

the code and in the second case the check is make
at the bottom of the code. The main difference is
that in the second case, the program will pass
through the code at least once, where in the first
case, it will not pass if the condition is not met.

Procedures

A procedure is a piece of code that can be called
from many places in the main code. Written once,
it can be used many times from many places.

DEFINE PROCEDURE foo (var)

END DEFINE foo

ZX81 Basic has GOSUB, short for Go Subroutine,
which is similar to a procedure. A procedure
usually has variables. In ZX81 Basic certain
variables need to be set first before calling the
subroutine. These need to be documented.

90 LET var=15
100 GOSUB 500

530 RETURN

Functions

A function would be the same on the ZX81 as a
procedure. All variables will be global and the
return variable (implied) will have to be
documented so it is known what variable will hold
the final result.

Define Function Foo (var)

return x
end define foo

100 let var = 53

110 letx=0
120 gosub 500
130

500 let var = var + 1
510 let x = var
520 return

aEOE =

